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Theory of optimum shapes in free-surface flows. 
Part 2. Minimum drag profles in infinite cavity flow 

By ARTHUR K. WH1TNEY-f 
California Institute of Technology, Pasadena, California 

(Received 8 September 1971 and in revised form 6 July 1972) 

The problem considered here is to determine the shape of a symmetric two- 
dimensional plate so that the drag of this plate in infinite cavity flow is a mini- 
mum. With the flow assumed steady and irrotational, and the effects due to 
gravity ignored, the drag of the plate is minimized under the constraints that the 
frontal width and wetted arc-length of the plate are fixed. The extremization 
process yields, by analogy with the classical Euler differential equation, a pair of 
coupled nonlinear singular integral equations. Although analytical and numerical 
attempts to solve these equations prove to be unsuccessful, it  is shown that 
the optimal plate shapes must have blunt noses. This problem is next formulated 
by a method using finite Fourier series expansions, and optimal shapes are ob- 
tained for various ratios of plate arc-length to plate width. 

1. Introduction 
We consider the two-dimensional cavity flow of an incompressible fluid past 

a symmetric plate of arbitrary shape. The flow far upstream is uniform with 
velocity U ,  pressure pa,  and density p. The pressure pc inside the cavity is 
assumed to be a constant, so that by Bernoulli’s law the fluid velocity at  the 
cavity wall is a constant V ,  where 

H P  1 v2+pc = +pU2+pm. 

The cavity flow may be characterized by the cavitation number 

As the cavitation number decreases, the length and width of the cavity grow 
indefinitely and the flow approaches ‘Helmholtz flow’, in which the cavity is 
infinitely long and the cavity pressure equals the free-stream pressure (a = 0). 

The specific problem considered here is to find the shape of a symmetric plate 
(see figure 1) of given wetted arc-length so and given frontal width yo, so that the 
drag of this plate in infinite cavity flow (a = 0) is a minimum. A precise definition 
of the class of plates under consideration will be given in § 2. The solution of this 
problem has obvious applications in the design of struts or other two-dimensional 
non-lifting surfaces which may operate in the super-cavitating range. For flows 

t Present address : Lockheed Palo Alto Research Laboratory, Lockheed Missiles and 
Space Co., Pa10 Alto, California. 
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z plane 

FIGURE 1. The physical plane. Note that SA and S'A' are parts of the body boundary 
that are exposed to the same constant pressure pc as on the cavity boundary. 

at  large Reynolds number, the viscous effects may be ignored as a first approxima- 
tion; however, corrections due to viscous drag can be calculated once the potential 
flow is known. Although optimal shapes are sought for the case g = 0, these 
shapes should remain approximately optimal for G- > 0, since the rule 

C,(G-) = 0 ) ( 1  +a) 
is known to relate approximately the drag coefficient C, at G- = 0 to the drag 
coefficient of the same body for 0 < CT 6 1 (see e.g. Gilbarg 1960). Thus, to 
minimize C, a t  a given (r > 0, we could just as well minimize C,(O). It should be 
noted that this rule appears to be a good approximation only for blunt bodies, 
so the above argument may be less accurate when the arc-length becomes much 
larger than the width of the plate. 

Lavrentieff (1938) gave the solution to a related minimum drag problem (see 
e.g. Gilbarg 1960), under the constraining condition that the plate is confined to 
lie within a rectangle which circumscribes the nose and ends of the plate. If the 
nose of the plate is at  the origin and the plate ends are at  (xo, _+ Qy,), the solution 
for the optimal profile (see figure 2) was found by Lavrentieff to consist of a flat 
nose section, of breadth h and the free streamlines ensuing from the ends of this 
section, as a continuation of the body, to pass through (xo, 5 +yo), the flat nose 
length h, being uniquely determined for given xo and yo. The pressure difference 
across the flat portion of the plate is the only contribution to drag, since the 
fluid pressure equals the cavity pressure (I, = p,.) on the free streamlined sections 
of the plate. This solution was obtained by the use of several comparison and 
monotonicity theorems which follow from the maximum principle for harmonic 
functions. 

The present work was originally conceived as an extension to Lavrentieff's 
problem; but it was hoped that the general problem with varied constraining 
conditions could be solved by using the variational calculus method introduced 
earlier by Wu & Whitney (1971). It may be noted that if the condition that the 
plate be confined to lie within the rectangle is dropped, one can easily construct 
a sequence of plate shapes which, in the limit, have zero drag (neglecting viscous 
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FIGURE 3. A sequence of plate shapes tending towards one with vanishing drag. 

effects). Such a sequence is illustrated in figure 3. A typical plate consists of an 
inverted cap of width h, and length h2 plus the free streamlines which issue from 
the ends of the cap and go on to pass through the corners of the rectangle. All 
other plate shapes in this sequence are found by decreasing h, and increasing h, 
so that the free streamlines always pass through (xo, f *yo). As h, -+ 0, the flow 
inside the cap becomes a dead water region with stagnation pressure 

Ps = SPU2+PCn, 
so that the drag of the plate is just $pU2h,, which can be made arbitrarily small 
by proper choice of h,. Note that the pressure difference across the back face of 
the cap is the only contribution to drag. 

This observation led the author to consider the problem described earlier. It 
was thought that by fixing the arc-length of the plate, shapes such as those 
described above (with vanishing drag) would be eliminated. 
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FIGURE 4. Transformation from the complex potential plane to the 5 plane. 

2. The problem of the symmetric cavitating plate 
The class of flows under consideration is limited to those flows with an infinite 

cavity past a plate (see figure 1) of frontal width yo, total arc-length so, having a 
continuous slope except a t  the nose where the vertex angle is 2a, with 0 < a < 7 ~ .  

It is further possible to have a rear stretch of the plate (SA and S'A' say) at the 
cavity pressure p = pc  while it remains everywhere wetted; in other words, S A  
and S'A' are free streamlines. In addition, we assume that the pressure p on the 
plate satisfies p 2 pc, 

The last condition p 2 pc  is an obvious statement of the fact that the vapour 
pressure (assumed to equalPC) is the minimum pressure in the flow. The sections 
8-4 and X'A' a m  included since free streamlines have already been shown to make 
up part of Lavrentieff's profiles, and similar results are expected for the present 
problem. It is more convenient than not accounting for this expectation from the 
beginning. Note, also, that the assumption imposes no undue restrictions on the 
problem, since the actual locations of X and 8' are not known apriori, but must be 
found as part of the optimization requirement. 

By proper choice of origin and magnification, the complex potential plane 
f = q5 + i$ is mapped to the upper half < = ( + ir plane (see figure 4) by 

f =  iAUg2 ,  

where q5 is the velocity potential, $ the stream function, and A a real, positive 
constant which is chosen so that S'OS maps to < 1. The sections SA and S'A' 
map to 1 < < c ,  where c 2 1 (equality holds only if S = A,  X' = A');  the re- 
maining sections of the free streamlines lie on c < 161 < co. 

We shall adopt the same notation as used by Wu & Whitney (1972) in part 1 
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of this paper (hereafter referred to as part 1). In particular, the complex velocity 
w and the logarithmic hodograph w are 

(2) 

(3) 

(4) 

% O + )  = 0 (151 2 1). (5) 

w ( E + ~ o )  = ~ ( g , o + ) + i w , o + )  = r(E)+ip(E) (151 G I), (6) 

U5) 2 0 ( ( E l  11, (7) 

r( -1) = 0. (8) 

w = df/dz = u - iv = qe-ie, 

~ ( 5 )  = log ( U/W) = log (U/q)  + i6' = 7(5,7) + i@(g, 7). 

p-pc = +p(UZ-q2) = +pU2(1-e--2~). 

The pressure p is given by Bernoulli's law 

On the free streamlines XI and S'I', p = pc;  therefore, by (4), 

If the boundary value of w on S'OS is denoted by 

then, sincePC is the minimum pressure in the flow, the inequality 

follows by (4); and, since the pressure is continuous at  S and S', 

The hodograph variable w ( 6 )  may be split into two parts, w ( g )  = w o ( [ )  + w,(<), 
where w,, accounts for the singular behaviour of w at the stagnation point c = 0, 
and wl( = I?, + iP1, for 151 < 1) is analytic in the entire upper half plane including 
the real axis. It can be shown, in fact, that 

(9) 
2a 

4 6 )  = ; 1% "2 - 1)a + w3 + w1(5), 

where (c2- 1)6 is defined in the 6 plane cut along the real axis (51 < 1 and is 
positive for 6 = 5 > 1; the logarithm function is defined to be that branch which 
is real for a real, positive argument, with a cut along the negative real axis of the 
argument. Letting 6 --f [ + i0, I < 1, in (9) and comparing this with (6), we have 

2a 
( $ 0 4  

P(5) = asgnt+P1(5), ( l o b )  

r(c) = -1og(P+(l 7T -52)sl/151>+rl(E), 

so that the proper logarithmic singularity of 1' = Rew = log(U/q) and the 
proper jump in flow angle, p(0 + ) - p(0 - ) = 2a, are exhibited at  6 = 0. From 
the conditions required of w on the free surface and a t  infinity, and from our 
choice for wo, it  readily follows that 

rl(5) = Re{w1(5+i0)) = 0 (161 > 1); (11) 

01(C) -+ 0 as 151 -fa- (12) 

Finally, I' in ( I O U )  must be chosen so that inequality (7) is satisfied. Also, (8) 
and ( I O U )  imply 

F1( 5 1) = 0. (13) 
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The function w, is best determined for the so-called inverse problem by re- 
garding either p,([) or pl(E) as a known function of 6. This information, together 
with (11) and (12), determines w1 uniquely. We now suppose that rl = Rew, 
isgiven which satisfies (13) and is Holder continuous (see part 1 for the definition) 
on 161 < 1. The Dirichlet problem for w,, 

together with (12), has the solution 

which may be verified by letting y -+ [ + iO( ][I < 1) in (15) and using Plemelj's 
formula (e.g. see Muskhelishvili 1953, Q 17). The imaginary part of w1 on S'OS 
is found to be 

where f denotes the Cauchy principal value. The Holder continuity of p1 follows 
from the assumptions already made on r,. (Note that if rl does not satisfy (13), 
but approaches a non-zero value at  an endpoint, then pl, as given by (16), will 
have a logarithmic singularity a t  that endpoint.) By (2) and (3), the plate shape 
and the cavity boundary are given parametrically by 

x ( [ )  = z(E)+iy([) = A (17) 

and, since the plate is symmetric, its frontal width is given by 

yo = Im A / '  eO(c)gd& 
- C  

It is convenient for subsequent analysis to convert this expression for yo to 
an integral from - 1 to + 1. To do this, we first continue w ( g )  into the lower half 
plane by w ( c )  = -wf). Next, we consider the function < e W ( c )  which appears in 
the integrand in (18). This function is uniquely determined by the jump in its 
value (due to the discontinuity of w )  across the cut (51 < 1 and by its expansion 
for large lgl (see Muskhelishvili 1953 , s  78). In  fact, it can be shown that 

in which the first integral exhibits the correct discontinuity across the cut 
161 G 1 and the last two terms are required by the expansion of the left side of 
(19) for 161 9 1 (see Whitney 1969). In  this expansion, we use the integral repre- 
sentation 
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which is found by exactly the same procedure as that used in determining w1(5) 
(see (14) and (15)). By substituting (19) into (18), andnoting thatp( - E )  = -&J, 
we obtain 

-1 

An element of plate arc-length ds is found from (1 7), (5), and (6) to be 

Thus, the total arc-length of the plate is given by 

The complex force acting on a plate element dz is given by 

d F =  ( p - p J ( - i d z ) ,  
or, by (4), (5), (61, and (17), 

and dF = 0 for 151 > 1. By integrating this expression, noting again the asym- 
metry of P(f) ,  we obtain for the drag D 

D = pU2A t sinh r ( t )  sinP(t) at, 

and the lift vanishes, as we should expect for a symmetric shape a t  zero angle of 
incidence. An alternative expression for the integral which appears in (23), and 
also in the expression for the width (21), may be obtained by substituting (20) in 
the left side of (19) and expanding this equation for large 161. By matching the 
coefficients of [-l on both sides of this expansion, we obtain the identity 

t sinh r ( t )  sinP(t) dt = - Sll 277 (24) 

Since p and U are kept constant in the minimization of the drag, it is convenient 
to set D* = D/$pU2 so that D* has the dimension of length. By (23) and (24) 
we have 

3. The minimum drag problem 
In  $ 2  we showed that the problem of minimizing the drag of a symmetric 

profile of given width and arc-length reduces to finding functions rl(E) and pl(() 
and constants A ,  c and a, such that D* in (25) is a minimum subject to the con- 
straints (21) and (22), in which yo and so are given fixed quantities. The functions 
I?(() and p(&) in (21), (22) and (25) are related to r1([), p1(t;) and the half vertex 
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angle of the plate OL. by (10); furthermore, pl([) is related to J?,([) by (16), in which 
rl satisfies the end conditions (13) and is chosen so that in (10a)  is positive. 
Equivalently, we may state this problem in terms of P(t), p(E), A,  and c, and omit 
further reference to P1([), pl(<), and a; however, the discontinuous behaviour of 
I' and p, as exhibited in (lo), should still be recognized. By letting 5 -+ E + i0 
(161 < 1) in (20), we obtain the identity 

which may also be verified by (10) and (16). In  the above, the symbol U, denotes 
the finite Hilbert transform. Finally, in (21), ( 2 2 ) ,  and (25), the factor A is a real, 
positive constant and the parameter c, which determines the location of the end- 
points of the plate in the plane, satisfies I < c < co. 

This problem i s  equivalent to finding a pair of extremal arcs, F([) and p([) ,  
which satisfy (26) and minimize the functional 

m X ) , P ( ~ ) ; A c l  = ~*--h,s,-2%y, 
1 

-1 
= 

f(r(t) ,p(t)7 t ;  c, dt+: (I  -&) (Ill r(t) d t ) 2 ,  (27a) 

where, by (21), ( 2 2 ) ,  (24) and ( 2 5 ) ,  

j ( r ( [ ) ,p ([ ) ,~;h l ,h2 ,C)  = -h1[4(c2- l)+er(QlcIi 

- %Ctsinh r(0 ~ o s P ( ~ ) l o g ( ( c - E ) / ( c + E ) ) +  2crlE)l. ( 2 7 b )  
In  the above, A,, A, are Lagrange multipliers, and the integral identity (24) has 
been used in the expression (21) for yo. 

The general variational problem of this type has been investigated earlier 
by Wu & Whitney (1971, 1972). For the present problem the method of solution 
will follow the same approach with some slight modifications. Let the set 
{r(c), /I([), A,  c) denote the optimal solution and let {?([),@([),A, E l  be an arbi- 
trary neighbouring set which also satisfy (21), (22), and (26). The differences 
6rg) = F- r,spg) = ~ " - P , s A  = A - - A , ~ c  = ~-c,formasetofsmallvariations; 
SA, S,, and either 6r or Sp are independent of one another since by (26), 6F and 

445) = -H"W)l. ( 2 8 )  &/I are related by 

The variation of the functional I ,  about its optimal value, due to the variations 
{SI', Sp, 6A, 6c) is given by 

AI = I[r + w, p+ sp; R +&A, c+ ~ C I  - ~ [ r ,  p; A ,  c] 
1 

2 !  
= SI+- 62I+ ..., 

where, by (27), the first variation 61 and second variation are 

61 = IAaA+1c6c+A 1' "fr+,( '-n,)Jlsr(t)+fasp(t))~t,  2 (29) 
-1 

1 
621 = 21,, JA  6c -+- 1,,(sC)2 + 2 s ~  j { [ fr + ( i - A,) J 6r + j  6 dt 

-1 1 4 
2A 

+A 1 {frr(ar)2 + 2 f r p d r d ~  + j p , ~ ~ 2 )  + 7 (1 - ~ 2 )  ( ~ 2 ,  (30) 
-1 
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where the subscripts denote partial differentiation, and 
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1 1 

-1 -1 
J = f r ( t ) d t ,  JJ = f &r(t )d t .  

S l t f ( r ( t ) 7 p ( t ) , t ; A 1 , A 2 , c ) d ~ + -  7r (1 -A , )J2  = O ,  

(31 )  

For I to be a minimum, we must have 61 = 0 and 621 > 0 for arbitrary &A, 6c, 
and 6r([). Therefore, the three terms in the expression (29 )  for JI must vanish 
separately to ensure 61 = 0. The first of these requires la = aI/aA = I / A  = 0, or 

1 
( 3 2 a )  

(32b)  or, by ( 2 7 a )  and (31 ) ,  D" = Also + 27rA2y0. 

The second equation comes from aI/ac = 0, or by (27a ,  b) ,  

(33) 
t 2  sinh r(t) cos P ( t )  

Finally, for the last integral of (29 ) ,  we substitute (28) for Jp, then change the 
order of integration, giving 

j' -1 ( f r + : ( 1 - ~ 2 ) ~ + ~ g [ f  4 w ( t ) d t  = 0. ( 3 4 )  

Now, since 6r(5) is arbitrary, we obtain the nonlinear singular integral equation 

where, by (27 b ) ,  

fr = -Aler@]5] - 2 A , [ ~ o o s h I ' ( ~ ) c o s ~ ( ~ ) l o g  - +2c  , 

f F  = 2hZ~sinhI'(5)sin/3(~)log - 
("3 1 1 (35b)  

(Z). 
This integral equation, which contains A,, A,, and c as parameters, is to be solved 
together with the linear integral equation (26 )  for the extremal arcs r(5) and p(5). 
The Lagrange multipliers A,, A, can be determined from (32 )  and (33 ) .  The para- 
meter c is most conveniently determined from the relation 

SO/YO = (36 )  

say, where E is a specified quantity, and yo, so are given by ( Z O ) ,  ( 21 ) .  Finally, the 
optimal drag coefficient (based on plate width) is given by 

Co = D/+pU2yo = D*/yo, (37 )  

in which D* assumes the form (25). (Note that actual calculation of the para- 
meter A is curtailed as A drops out of the expressions for CD and .so/yo. It is neces- 
sary, however, to  consider the variation 6A in order to obtain (32), which relates 

As explained previously, this optimal drag coefficient is a minimum if the 
second variation 621 > 0. Upon using (24)  to derive an alternative expression for 
the second variation of J2, the last two terms on the right-hand side of (30 )  

s O / Y O  and cD.) 

30 FLAf 55 
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become of the same form and can be readily combined. Further noting that I, = 0 
implies automatically IAC = 0, since lac = aI,/aA = Ic/A, the inequality 62I > 0 
now reduces to 

A(6c12 fmdt+A {grr(ar)2 +2grg6r6P+ggg(6P)2}dt > 0, (38) s s  
where g =f+ 2A(1 -h,)(sinh F(E) sinP((). Since A > 0, this inequality holds 
if both integrals are positive. The first term is positive when, by (27), 

Sllt2sinhI'(t) cosP(t)dt > 0. 
(c2 - t 2 ) 2  

(39) 

It has been shown by Wu & Whitney (1971,1972) that a necessary condition for 
the second integral in (38) to be positive is that 

grr +gpp = -hier('IgI > 0 ( ] E l  < 11, 

or simply A, < 0, (40) 

since I? is real. Once an optimal solution is found, conditions (39) and (40) may be 
checked to determine if the solution is actually a minimum. 

The singular integral equation (35) can be reduced to an integral equation with 
a regular kernel by using the identity 

cosh I' (6) cosP(g) = Ht[t sinh r(t) sinP(t)] + g, (41) 

which can be obtained by letting 5 -+ 5 k iO(lg1 6 1) in (19). Finally, substitution 
of ccosh I' cosp  given by (41) into (35) yields 

1 
where 

We note that the kernel K(t ,  [; c) is regular even at  t = g. 
It is now possible to show that, if an optimal shape exists, it must have a flat 

nose, i.e. a: = * 7 ~ .  To show this, we first note that by (42) er(Ol[l possesses a regular 
series expansion about < = 0 of the form 

K(t,  t ;  c )  = - 7T log{(c - t )  (c + 6 , h  + t )  (c - 5) } / ( t  - 8. (42b) 

er(t)lf;l = co+c1c2+ ..., (43) 

where the explicit forms of co, cl, . . . , etc., are easily found but are unnecessary. 
On the other hand, from ( I O U )  we can deduce that 

er(OI(1 = [{I + ( I  -62):)/1c1]2a/nIgler1(5) 
= (2)2a/a l~ l l -2alner l (o)  + O( 1,tJ2(1-a/n)) 

as 161 --f 0, since Fl(g) is assumed to be continuous, at  6 = 0, in particular. This 
expansion agrees with (43) if and only if a: = & 7 ~ ,  i.e. when the nose of the plate is 
flat. 

Since there are no known analytical methods for solving the system of integral 
equations, (26), (42), our only recourse is in some numerical methods. These 
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attempts have not been successful; however, in order to illustrate some of the 
many difficulties which beset such procedures, we briefly mention one of the 
schemes that has been tried. First, the integrals in (26), (32), (33) and (42) were 
approximated by numerical quadratures which involved the values of I’ ( f )  and 
p(5) at N points {ti) from - 1 to + 1. An initial guess of {I?(&)] was made and the 
set {/3(&)) was then calculated by (26). Next the Lagrange multipliers A,, A, were 
found from (32) and (33), in which the current values of F and /3 were used. Finally, 
new values of (r((,))were calculated by solving for r ( f )  in (42), and the process was 
repeated, with the hope that the iterations would converge. These calculations 
were done for arbitrary values of c 2 1, with different c’s corresponding to 
different ratios so/yo. 

As mentioned above, this method and several similar ones did not work. 
Among the more disagreeable features encountered are the following: (i) the 
iterations do not always converge; (ii) the values of I?(&), as given by the solution 
of (42) for I?@, are not always positive, so that (7) is violated; and (iii) the values 
of I’ at f = & 1 is not zero, so that p in (26) becomes large as 5 + & 1 and integra- 
tion of terms involving sinp and cosp by numerical quadrature fails. Corrective 
steps were taken, such as enforcing I?( & 1) = 0 a t  each iteration step, and by in- 
creasing N ;  these measures did not help, however. 

F( & 1) = const. =# 0, 

and /3 has a higher-order (branch-type) singularity if r itself is singular at the 
endpoints (e.g. see Muskhelishvili 1953, $29). By studying the linear case, 
in which the functionals are quadratic in I? and /3 (see Wu & Whitney 1971, 
1972), it was deduced that the endpoint condition (7) cannot be satisfied in 
general. If this conclusion is also true for the present nonlinear case, it is likely 
that a solution to (26) and (42) will have no direct physical relevance since I’ 
and /3 will be singular at  ,$ = t 1. Nevertheless, such a solution (if one exists) 
would provide a mathematical bound for the drag which could then be used in 
judging the ‘degree of optimality ’ of results obtained by other (approximate) 
methods, such as that presented in 3 4. 

Note that p(f )  in (26) has a logarithmic singularity a t  f = 5 1 if 

4. Solution by expansions in finite Fourier series 
We now investigate a method to obtain an approximate optimal solution by 

the expanding r,(f) and P1(f) in Fourier series in which the constant coefficients 
are chosen so that the drag is minimized, subject to the same isoperimetric con- 
straints as before. Let the expansion for I?, be given by 

N 

where 5 = cosO(0 6 8 < n-). This I?, satisfies (13) and the required symmetry 
property. From the identity 

30-2 
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we see that (16) is satisfied, term by term, if 

N 

n= 1 
pig) = - c an COB (2n - i)  e. 

OK)  = 1 0 g w  2 -  1)4+i]/5)+ W l ( 5 ) .  

Upon setting 01. = &r in (9) (as dictated by the result of § 3), we obtain 

Therefore, by (17), the frontal width of the plate is given by 

(45) 

yo = - 2 ~ ~ m / - C g i ( 0 [ ( ~ 2 -  0 1)4+i]dg. (46) 

This integral is most easily evaluated by the change of variables 

g = +(v+ v-I), (47) 

which maps the upper half C; plane into the half circle IvI < I, In1 v 
figures 4 and 5) and maps the endpoints of the plate 6 = 

0 (see 
c to v = T K ,  where 

K = C - ( C 2 - 1 ) 4 .  (48) 

It is readily verified that o, 'as a function of v is given by 

N 

n=l 
wl(v) = i c a,v2n-1 3 iQ(v) .  

From (46) to (49), the expression for the width now becomes 

(49) 

which is evaluated by taking the path of integration L, shown in figure 5. In the 
limit E --f 0, it can be shown (see Whitney 1969) that 

4-  m ( K )  

K 
+n(2-aa,)2+ 

where Q'(t) = dQ/dt, Q"(t) = d2Q/dt2. By (loa), (44), and (48), the expression for 
the arc-length (22) becomes 

1 N 

(l+sin6)sinedO . (51) 

Finally, from (iOa), (25), and (44), the drag is found to depend only on the first 
of the Fourier coefficients, 

D* = kAn(2 - aly. ( 5 2 )  

The optimization problem reduces to minimizing D* in (52), subject to the 
constraints (50) and (51), over the ( N  + 2)-dimensional space (A ,  K, a,, a 2 , .  . ., aN). 
For general values of N > 1, this problem must be done numerically; however, 
if N = 1 the integrals in (50) and (51) may be evaluated in terms of special 
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functions. Note that by ( lob )  and (45), p(5) = +7r sgn 5-a, cos 8, for the case 
N = 1, so the plate section X'OS is convex (or concave) when viewed from the 
approaching flow as a, is positive (or negative). This section is a flat plate, 
corresponding to the Lavrentieff profile (see 0 1) when a, = 0. 

With N = 1 in (49)-(51), n(t) = a,t, so that (50) and (51) can be reduced to 

yo = &A{ ( 2ar2 + 4 q l -  K-,) sin (a, K )  + ( k - 1 -  a, K-1 - 2 ~ a ~ l )  cos (a, K )  

+(2-a,)2[+7r-Si(U,K)]}, (53) 

1 so = A & ( ~ + ~ - 1 ) 2 - 1 +  e-ais'ne(1+sin8)sinBd8 [ 1: 
= &A[K' + K-, + 6 + 47r( 1 + a,') {L,(a,) - I,(.,)} - 4n{LO(a,) - I0(al)}], (54) 

where Si(x) is the sine integral, L&) and I,(x) are the modified Struve and Bessel 
functions, respectively (see e.g. Abramowitz & Stegun 1964). 

The problem of finding the optimal plate shape from the class of plates with 
N = 1 is now equivalent to extremizing 

I (A ,  K,  a,) = I>*@, a,) - A,so(A, K,  a,) - 27rA,YO(A, K, a,), 

where, as before, A, and A, are unknown Lagrange multipliers and D*, so and yo, 
are given by (52), (54) and (53), respectively. If I is extremal, the three partial 
derivatives IA, IK and la, must vanish. This gives three relations among the quan- 
tities A ,  K ,  a,, A, and A,. By eliminating A, and A, from these three equations we 
obtain 

where soK = as, /a~ ,  etc. Let the solution of (55) be denoted by a, = f(K). For 
K - 1 (c N 1) it can be shown, by expansions of (52),  (53), (54) and (55),  that 

(55 )  D ~ [ S O f . Z I Y O K -  s o K ~ o C 7 q l  - D ~ l [ s o A y o K - s O K ~ O A 1  = O ,  

a, = f ( K )  = { S/( 377 + IS)} ( 1 - K ) ,  - { 2 4 4  37r + I 6)2} ( 1 - K ) ~  + O( 1- K ) ~ .  (56) 
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FIGURE 6. The curve a, = f ( ~ )  satisfying equation (55).  

The general solution, as plotted in figure 6, if found by fixing K at various values 
between 0 and 1 and numerically solving for a, from (55). As K + 0 (c -+ a), a, 
is found to be the root of the transcendental equation 

This root is given by a, N 0.1020, which provides an upper bound for a,; the 
corresponding optimal shapes are only slightly curved over S'OS. 

This one relation, a, = f(~), is all that is needed to complete the solution, since 
the factor A drops out of the expressions for the drag coefficient and the ratio 
so/yo of arc-length to chord. Thus, by (36) and (37) 

CD = Co(a1,K) = D*/YO, 

k = k(U,, K )  = So/'tJo. 

(57) 

(58) 

Evaluation of (57) and (58) (in which D*, yo, and so are given by (52)) (53), 
and (54)) for a, = f ( ~ )  gives a parametric representation of C, against k. This is 
plotted in figure 7, where C, = 2n/(n + 4) is the drag coefficient of a flat plate in 
infinity cavity flow (see e.g. Lamb 1932). Ask + a, it can beshownfrom (57) and 
(58)thatCD N (4+n)/(n+8k). 

The minimum drag profiles for various values of k are obtained by numerically 
integrating dz in (17) and, as shown in figure 8, are seen to be quite similar to 
Lavrentieff's profiles discussed earlier in 0 I. However, by expanding yo in (53) 
and so in (54) for small a,, it can be shown that for (k - 1) < 1 

CD = - - - - ( I - ~ ( k - l ) ~ + O ( ~ - ~ ) } ,  2n 
4 + n  (59) 

where y = 4 { 2 ( ~ +  4)}4 N 1.0584 (60) 

7 = 4{$(971+64)/(n+4) (3n+ 16))4 N 1.1641 

for the Lavrentieff profiles (a, = 0))  and 

(61) 
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FIGURE 7. Minimum drag coefficient against k for the case N = 1. 
C~/CD, N (4+7r) / (n+Sk) as k-+ 0. 
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FIGURE 8. Some optimum plate profiles for the case N = 1. 
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for the profiles in figure 7, Therefore, for k close to unity, the drag coefficients of 
the profiles in figure 7 are slightly less than those for Lavrentieff’s profiles. This is 
not too surprising, however, since the constraining conditions in the present 
problem differ from Lavrentieff ’s. 

The cases N = 2, 3, . . . , could, in principle, be carried out along similar lines 
and should result in improved drag coefficients for a given Ic = so/yo. The numeri- 
cal examples given by Wu & Whitney (1971), in which the exact solutions to the 
variational problems are known, indicate that expansion in Fourier series is a 
very effective method, at  least for the case of quadratic functionals. Whether 
the same holds true for the present problem, in which the functional is of a dif- 
ferent type, remains to be seen. 

This paper is based on part of the author’s doctoral research which was sup- 
ported by the National Science Foundation and carried out at  the California 
Institute of Technology under Professor T. Y .  Wu, whose interest and encourage- 
ment is gratefully acknowledged. The present work was sponsored by the Naval 
Ship System Command General Hydrodynamics Research and Development 
Center and the Office of Naval Research, under contract 220(51). 
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